Aureobasidium tremulum Inamdar, Roh. Sharma & Adhapure, sp. nov.

Etymology. Named after the shaking and trembling behaviour of the yeast when observed under a light microscope (Latin **tremulum** - shaking, trembling).

Classification — Aureobasidiaeae, Dothideales, Dothideomycetes.

Initial growth as creamy white colonies on potato dextrose agar, later turning brown to dark brown. Colonies appear to be dry and rough. Each colony is round with a convex elevation from a cross-sectional viewpoint and the edges appear to be undulated. Growth is optimal on Sabouraud dextrose agar (SDA). Colonies on nutrient agar did not become dark brown. **Cells** are generally oblong-shaped with very few cells assuming an irregular shape. **Budding** occurs frequently. The average size of mature, non-budding cells is 2.8 x 6.4 μm. **Sexual reproduction** was not observed. **Pseudohyphal** formation not observed. Optimal growth occurred at 20–25 °C, with some growth at 5–15 °C. The following carbon compounds are assimilated: D-glucose, L-arabinose, D-xylose, D-maltose, D-saccharose, D-Trehalose, D-raffinose. No growth observed with glycerol, calcium-2-keto-gluconate, L-lactose while weak assimilation was observed for adonitol, xylitol, D-galactose, D-melezitose, and D-raffinose.

Habitat — Aureobasidium tremulum** was isolated as a culture contaminant in the laboratory of Department of Biotechnology and Microbiology of Vivekanand Arts, Sardar Dalipisingh Commerce and Science College, Aurangabad.

Distribution — India (Aurangabad, Maharashtra).

Notes — An initial BLASTn similarity search using the LSU region sequence in the NCBI type sequences nucleotide database showed the highest similarity to *A. lini CBS 125.21* (GenBank MH866211; 98 % identity, 99 % query cover) followed by *A. melanogenum* strain CBS 105.22 (GenBank MH866219; 98 % identity; query coverage 97 %). The BLASTn similarity search in the NCBI type sequences database using the ITS sequence showed the highest similarity to *Kabatiella bupleuri* CBS 131304 (GenBank NR_121524; 95 % identity, 100 % query coverage) followed by *Aureobasidium iranianum* CCTU 268 (GenBank KM093738; 95 % identity, 99 % query coverage) and *A. melanogenum* CBS 105.22 (GenBank NR_159598, 95 % identity, 99 % query coverage). The neighbour-joining (NJ) phylogenetic analyses of ITS and LSU RNA gene regions were done using sequences of other species of *Aureobasidium*. The phylogenetic tree topology clearly shows that the present strain UN-1 is novel and does not cluster with any known species of the genus. The phylogenetic analysis based on the ITS alignment shows that it forms a sister branch to *A. thailandense* NRRL 58543 (GenBank JX462675) and *A. mangrovei* IBRC-M-30266 (GenBank KY089087). In the phylogenetic analysis based on the LSU alignment, it does not group with known species but was placed at equal evolutionary distance with *A. cauvilorum* CBS 242.64 (GenBank FJ150944).

Notes — A BLASTn similarity search using the LSU region sequence in the NCBI type sequences nucleotide database showed the highest similarity to *A. tremulum* (GenBank MH186702; 98 % identity, 99 % query cover) followed by *A. lini* (GenBank MH186701; 98 % identity, 99 % query cover) and *A. melanogenum* strain CBS 105.22 (GenBank MH1866219; 98 % identity; query coverage 97 %). The BLASTn similarity search in the NCBI type sequences database using the ITS sequence showed the highest similarity to *Kabatiella bupleuri* CBS 131304 (GenBank NR_121524; 95 % identity, 100 % query coverage) followed by *Aureobasidium iranianum* CCTU 268 (GenBank KM093738; 95 % identity, 99 % query coverage) and *A. melanogenum* CBS 105.22 (GenBank NR_159598, 95 % identity, 99 % query coverage). The neighbour-joining (NJ) phylogenetic analyses of ITS and LSU RNA gene regions were done using sequences of other species of *Aureobasidium*. The phylogenetic tree topology clearly shows that the present strain UN-1 is novel and does not cluster with any known species of the genus. The phylogenetic analysis based on the ITS alignment shows that it forms a sister branch to *A. thailandense* NRRL 58543 (GenBank JX462675) and *A. mangrovei* IBRC-M-30266 (GenBank KY089087). In the phylogenetic analysis based on the LSU alignment, it does not group with known species but was placed at equal evolutionary distance with *A. cauvilorum* CBS 242.64 (GenBank FJ150944).

Typus. India, Aurangabad, Maharashtra, laboratory contaminant, July 2016, A. Inamdar (holotype MCC 1683 preserved as metabolically inactive strain, ITS and LSU sequences GenBank MK503657 and MK503660, MycoBank MB829941).

Notes — An initial BLASTn similarity search using the LSU region sequence in the NCBI type sequences nucleotide database showed the highest similarity to *A. lini CBS 125.21* (GenBank MH866211; 98 % identity, 99 % query cover) followed by *A. melanogenum* strain CBS 105.22 (GenBank MH866219; 98 % identity; query coverage 97 %). The BLASTn similarity search in the NCBI type sequences database using the ITS sequence showed the highest similarity to *Kabatiella bupleuri* CBS 131304 (GenBank NR_121524; 95 % identity, 100 % query coverage) followed by *Aureobasidium iranianum* CCTU 268 (GenBank KM093738; 95 % identity, 99 % query coverage) and *A. melanogenum* CBS 105.22 (GenBank NR_159598, 95 % identity, 99 % query coverage). The neighbour-joining (NJ) phylogenetic analyses of ITS and LSU RNA gene regions were done using sequences of other species of *Aureobasidium*. The phylogenetic tree topology clearly shows that the present strain UN-1 is novel and does not cluster with any known species of the genus. The phylogenetic analysis based on the ITS alignment shows that it forms a sister branch to *A. thailandense* NRRL 58543 (GenBank JX462675) and *A. mangrovei* IBRC-M-30266 (GenBank KY089087). In the phylogenetic analysis based on the LSU alignment, it does not group with known species but was placed at equal evolutionary distance with *A. cauvilorum* CBS 242.64 (GenBank FJ150944).