Diaporthe obtusifoliae
Diaporthe obtusifoliae Crous, sp. nov.

Etymology. Named after the host species from which it was isolated, *Acacia obtusifolia*.

Classification. *Diaporthaceae, Diaporthales, Sordariomycetes.*

Leaf spots amphigenous, medium brown, circular with a raised margin, 1–4 mm diam, coalescing with age to form larger blotches. *Conidiomata* pycnidial, immersed, globose, 180–250 μm diam, medium brown, with central ostiole; wall of 4–6 layers of medium brown *textura angularis*. *Conidiophores* lining the inner cavity, hyaline, smooth, subcylindrical, branched, 1–2-septate, 25–40 × 4–6 μm. *Conidiogenous cells* terminal and intercalary, subcylindrical with slight apical taper, 10–25 × 3–5 μm; proliferating percurrently near apex. *Conidia* solitary, aseptate, ellipsoid, apex subobtuse, base with truncate hilum, 2 μm diam, slightly thickened and refractive; conidia hyaline, smooth, guttulate, becoming pale brown with age, (12–)14–16(–18) × (6–)6.5–7 μm.

Culture characteristics. Colonies flat, spreading, with moderate aerial mycelium and feathery, lobate margins, reaching 30 mm diam after 2 wk at 25 °C. On MEA surface pale olivaceous grey, reverse olivaceous grey. On PDA surface and reverse olivaceous grey. On OA surface pale olivaceous grey.

Typus. Australia, New South Wales, Grupa State Forest, on leaves of *Acacia obtusifolia* (Fabaceae), 29 Nov. 2016, P.W. Crous (holotype CBS H-23318, culture ex-type CPC 32336 = CBS 143449, ITS, LSU and his3 sequences GenBank MG386072, MG386125 and MG386137, MycoBank MB823421).

Notes — Although *D. obtusifoliae* is morphologically distinct from the typical *Diaporthe* spp. by forming broadly ellipsoid conidia, it clusters within the genus. Based on morphology it is distinct from *D. acaciarium* (on *A. tortilis*, Tanzania, alpha conidia (6–)6.5–7–(7.5) × (2–)2.5–(3) μm; Crous et al. 2014b) and *D. acaciigena* (on *A. retinodes*, Australia, alpha conidia ellipsoid to subclavate, (9–)10–11(–12) × (4–)6–6.5–(7) μm; Crous et al. 2011). It is also distinct from *D. scobina*, to which it is most closely related (Gomes et al. 2013).

Based on a megablast search using the ITS sequence, the closest matches in NCBI’s GenBank nucleotide database were *D. acaciigena* (GenBank NR_137113; Identities 538/568 (95 %), 7 gaps (1 %)), *D. scobina* (GenBank KC343195; Identities 534/572 (93 %), 20 gaps (3 %)) and *D. padi* var. *padi* (GenBank KC343170; Identities 531/569 (93 %), 18 gaps (3 %)). The highest similarities using the LSU sequence were *D. perjuncta* (GenBank AF408366; Identities 829/835 (99 %), no gaps), *D. fusicola* (GenBank KY011836; Identities 825/832 (99 %), no gaps) and *D. ovoicicola* (GenBank KY011838; Identities 818/825 (99 %), no gaps). The highest similarities using the his3 sequence were with *D. acaciigena* (GenBank KC343489; Identities 356/385 (92 %), 13 gaps (3 %)), *D. pustulata* (GenBank KC343671; Identities 349/382 (91 %), 10 gaps (2 %)) and *D. amygdali* (GenBank KP293563; Identities 349/384 (91 %), 10 gaps (2 %)).