Lasionectria hilhorstii L. Lombard, *sp. nov.*

Etymology. Named for Tjidde Hilhorst, who collected the sample. This species was discovered during a Citizen Science project in the Netherlands, ‘Wereldfaam, een schimmel met je eigen naam’, describing novel fungal species isolated from Dutch soils.

Classification — Bionectriaceae, Hypocreales, Sordariomycetes.

Colonies on OA at 25 °C attaining 12–20 mm in 7 d, aerial mycelium collapsed with abundant sporulation on the medium surface forming vinaceous green to vinaceous black droplets of conidial masses, margin undulate surrounded by a vinaceous to greyish rose halo, surface vinaceous black, reverse isabelline in the centre becoming vinaceous towards the margins. On MEA at 25 °C attaining 20–25 mm in 7 d, with moderate aerial mycelium, felt with string folds into the medium, margin undulate, surface olivaceous black in the centre due to abundant sporulation becoming brick to rosy vinaceous towards the margin, surrounded by a vinaceous halo, reverse vinaceous to rosy buff. *Sexual morph* not seen. **Vegetative hyphae** septate, hyaline, smooth- and thin-walled, becoming slightly verrucose with age, 1–2.5 µm wide. **Conidiophores** erect, arising directly from vegetative hyphae, simple or branched, straight, hyaline and smooth-walled becoming slightly verrucose and subhyaline with age, aseptate or with basal septum, up to 56 µm long. **Conidiogenous cells** phialidic, arising laterally from hyphae or in terminal pairs, or verticils of three, or small monopodially branched tufts of up to four from conidiophores, monophialidic, aseptate, elongate-ampulliform to subcylindrical, 13–24 µm long, 1–3 µm wide at the base, thin- and smooth-walled to slightly verrucose, hyaline to subhyaline with inconspicuous collarettes and pericalinal thickening. **Conidia** unicellular, ovoid to broadly ellipsoidal, 3–5 × 2–3 µm (av. 4 × 2 µm), subhyaline to olivaceous green, thick- and smooth-walled, forming slimy heads on the phialides. **Chlamydospores** not seen.

Notes. *Lasionectria hilhorstii* is morphologically reminiscent of *Acremonium cereale* (Gams 1971), but can be distinguished by the lack of flared collarettes and basal swelling of the phialides. Additionally, megablast searches of NCBI’s GenBank nucleotide database using LSU sequences indicated that the closest species were *L. oenanthicola* (GenBank KY607557; 1: Identities = 839/839 (100 %), no gaps), *A. cereale* (GenBank MH877716.1; 839/840 (99 %), 1 gap) and *L. mantuana* (GenBank GG505994.1; Identities = 839/839 (99 %), no gaps). The closest hits using ITS sequences were *L. oenanthicola* (Gen-Bank KY607542.1; 864/898 (96 %), 14 gaps (1 %)), *A. per­sici­num* (GenBank KM030294.1; 782/851 (92 %), 25 gaps (2 %)) and *Ijuhya dentifera* (GenBank KY607540.1; 793/869 (91 %), 21 gaps (2 %)). The closest hits using act sequences were *Gliocladium* sp. (GenBank KY608883.1; 606/650 (93 %), 7 gaps (1 %)). *Clonostachys rosea* (GenBank KP274072.1; 605/652 (93 %), 7 gaps (1 %)) and *Alternaria hyacinthi* (GenBank JK671603.1; 604/653 (92 %), 7 gaps (1 %)). The closest hits using rpb2 sequences were *Septofusidium berolinense* (GenBank KM232417.1; 699/856 (82 %), 11 gaps (1 %)), *Heleococcum aurantiacum* (GenBank JQ671603.1; 604/653 (92 %), 7 gaps (1 %)). The closest hits using tef1 sequences were *L. mantuana* (GenBank HM484844.1; 376/398 (94 %), 2 gaps (0 %)), *Neocosmospora sicinum* (GenBank KY607540.1; 793/869 (91 %), 11 gaps (1 %)) and *Stromatone­ctria caraganae* (GenBank KH112290.1; 688/857 (80 %), 10 gaps (1 %)). The closest hits using act sequences were *L. mantuana* (GenBank HM484844.1; 376/398 (94 %), 2 gaps (0 %)), *Neocosmospora sicinum* (GenBank KY607540.1; 793/869 (91 %), 11 gaps (1 %)) and *Hydropisphaera* sp. (GenBank HM484845.1; 232/268 (87 %), 13 gaps (4 %)).

Colour illustrations. Background, collection site (backyard); conidiophores and conidia. Scale bars = 10 µm.

Lorenzo Lombard, Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; e-mail: l.lombard@westerdijkinstitute.nl

© 2018 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute