Absidia terrestris
Absidia terrestris Rosas de Paz, Dania García, Guarro, Cano & Stchigel, *sp. nov.*

Etymology. Referring to the substrate from which the fungus was recovered (soil).

Classification — *Cunninghamellaceae*, *Mucorales*, *Mucoromycotina*.

Hyphae hyaline to brownish, coenocytic, smooth- and thick-walled, 5–12.5 mm wide, with a septum at the branching site, usually filled with oil droplets and presenting more or less abundant solitary or catenulate ovoid swellings, 7.5–12.5 mm wide. *Stolons* hyaline to brownish, 5–14 mm wide. *Rhizoids* well developed, hyaline, originating along the stolon but never in the same place where sporangiophores arise. *Sporangiophores* hyaline to brownish due to the mass of sporangiospores, pyriform, multi-spored, smooth-walled, apophyseate, 17.5–27.5 × 17.5–22.5 mm. *Apophysis* funnel-shaped, smooth-walled, 12.5–17.5 × 7.5–12.5 mm. *Columellae* globose, smooth-walled, showing a short collarette, sometimes with a wall projection, 5.7–5 mm diam. *Sporangiophores* hyaline when solitary, brownish in mass when mature, smooth-walled, cylindrical, 4–5 × 2–4 mm. *Chlamydospores* absent. Zygosporas not observed.

Culture characteristics — Colonies on MEA initially white, soon becoming greyish brown (M.6E3; Komerup & Wanscher 1978), covering the diameter of the Petri dish (90 mm) in 7 d at 25 °C, reaching 10 mm height in some points; initially white, then becoming brownish grey (M.8F3). Minimum and maximum temperature of growth 15 and 27 °C, respectively.

Notes — This fungus was isolated from a soil sample collected in Mexico DF. Morphologically, *Absidia terrestris* resembles the species of *Absidia* s.str. with cylindrical sporangiophores (Hoffmann et al. 2007), i.e., *Absidia anomalat*, *A. cylindrospora* var. *cylindrospora*, *A. pseudocylindrospora*, *A. psychrophila*, *A. repens* and *A. spinosa*. Based on a megablast search of NCBI's GenBank nucleotide database using the ITS sequence of the isolate FMR 14989 (the ex-type strain), the closest hits are A. *cylindrospora* (GenBank AY944889.1; Identities 505/579 (87 %), 21 gaps (3 %)) and *A. spinosa* (GenBank AY944888.1; Identities 379/463 (82 %), 34 gaps 7 %)). The closest hits using the LSU sequence was *A. cylindrospora* var. *cylindrospora* (GenBank JN206588.1; Identities 620/657 (94 %), 5 gaps (0 %)). In a similar search using the CBS database (Crous et al. 2004), the closest hits using the LSU sequence of the isolate FMR 14989 were *A. spinosa* var. *spinosa* (CBS 106.08, Identities 308/406 (75.68 %), 9 gaps (2.2 %)), and *A. repens* (FSU 939, Identities 543/575 (94.43 %), 1 gap (0 %)). While using the ITS sequence the closest hits were *A. cylindrospora* var. *cylindrospora* (CBS 100.08, Identities 470/548 (86 %), 18 gaps (3 %)), and *A. pseudocylindrospora* (CBS 100.62, Identities 236/262 (90 %), 10 gaps (3 %)). Our phylogenetic tree, built using the LSU sequences, corroborated that our fungus represents a new species of the genus *Absidia, A. cylindrospora* var. *cylindrospora* being phylogenetically the most closely related species. *Absidia terrestris* differs from *A. cylindrospora* var. *cylindrospora* in its lower growth rate on MEA at 25 °C and in the absence of growth at 30 °C (*A. cylindrospora* var. *cylindrospora* grows up to 34 °C), the sporangiophores not arranged in whorls, the absence of chlamydospores and the presence of both apical and basal septa in the shorter sporangiophores.

Colour illustrations. ‘Corpus Christi’ Public Park; colony on PDA, sporangiophore, columellae, sporangiophores. Scale bars = 15 µm, with the exception of the sporangiophores (= 5 µm).

Emmanuel Rosas de Paz, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain; Laboratory of Medical Bacteriology, Microbiology Department, ENBC-IPN, Prolongación Manuel Carpio y Plan de Ayala s/n, Miguel Hidalgo, Santo Tomás, 11350 Ciudad de México, D.F., México; e-mail: emmrodepaz@gmail.com

Dania Garcia, Josep Guarro, José F. Cano-Lira & Alberto M. Stchigel, Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain; e-mail: dania.garcias@urv.cat, josep.guarro@urv.cat, josec.cano@urv.cat & albertomiguel.stchigel@urv.cat

© 2018 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute

Fungal Planet 821 – 13 December 2018