Sclerostagonospora ericae Crous & M.J. Wingf., sp. nov.

Etymology. Name refers to Erica, the plant genus from which this fungus was collected.

Classification — Phaeosphaeriaceae, Pleosporales, Dothideomycetes.

Conidiomata (on pine needle agar; PNA) pycnidial, solitary or in small clusters, immersed or semi-erumpent, to 200 μm diam, globose, pale brown, with 1–3 dark brown, semi-papillate ostioles, to 40 μm diam; wall of 3–4 layers of pale brown textura angularis. Conidiophores reduced to conidiogenous cells lining the inner cavity, hyaline, smooth, ampulliform to doliform, 4–5 × 3–5 μm, proliferating inconspicuously percurrently at apex. Conidia solitary, pale brown, smooth, subcylindrical, guttulate, 1(–3)-septate, constricted at median septum, (7–)8–10(–11) × (2.5–)3 μm.

Culture characteristics — Colonies reaching up to 60 mm diam after 2 wk at 25 °C, with spreading, flat surface; margins smooth, lobate, and moderate aerial mycelium. On MEA surface dirty white to buff, reverse sepia. On OA surface buff. On PDA surface buff, reverse cinnamon.

Typus. SOUTH AFRICA, Western Cape Province, Franschhoek, on leaves of Erica sp. (Ericaceae), Nov. 2014, M.J. Wingfield (holotype CBS H-22606, culture ex-type CPC 25927 = CBS 141318; ITS sequence GenBank KX228268.1, LSU sequence GenBank KX228319.1, tef1 sequence GenBank KX228375.1, tub2 sequence GenBank KX228383.1, MycoBank MB817031).

Notes — Based on LSU sequences, Sclerostagonospora ericae is identical (813/813) to S. opuntiae (GenBank DQ-286772.1; Huhndorf 1992). However, the genus Sclerostagonospora is based on S. heraclei, and the latter is presently not known from DNA or culture, hence the concept of Sclerostagonospora remains unsettled. On ITS S. ericae is 98 % (550/560) similar to S. opuntiae (GenBank DQ286768.1) and 94 % (541/574) similar to Stagonospora foliicola (GenBank KF251256.1).

Colour illustrations. Erica sp. in Franschhoek; conidiomata sporulating on OA, conidiogenous cells, ostiolar region and conidia. Scale bars: conidiomata and ostioles = 200 μm, all others = 10 μm.