Pseudobeltrania ocoteae
Fungal Planet 381 – 4 December 2015

Beltraniaceae Nann., Repert. mic. uomo: 498. 1934. **emend.**

Classification — **Beltraniaceae**, Xylariales, Sordariomycetes.

Mycelium immersed to superficial, composed of subhyaline to brown, thin-walled hyphae. Stromata usually present, parenchymatous to pseudoparenchymatous, hyaline to brown, often confined to epidermal cells. Setae present or absent, straight, thick-walled, dark brown, smooth or verrucose, with radially lobed basal cell, tapering to acute apex. Conidiophores simple, erect, septate, pale brown, arising from the base of setae or separate. **Conidiogenous cells** pale brown, integrated, denticulate.

Separating cells present or absent, pale brown, thin-walled, oval to subglobose, with one to several denticles. Conidia biconic, lageniform to navicular, subhyaline to red-brown, with transverse band of pale pigment at widest part of the conidium, rounded or 1-denticulate or rostrate at base, apex spicate or apiculate or truncate.

Type genus Beltrania Penz.

Pseudobeltrania ocoteae Crous & M.J. Wingf., *sp. nov.*

Etymology. Name refers to the host genus Ocotea on which this fungus was collected.

Mycelium immersed, consisting of hyaline, septate, branched, 1.5–2.5 µm diam hyphae. Conidiophores solitary, stipe unbranched, straight to flexuous, (0–1)-septate, 20–50 × 5–8 µm, medium brown, smooth, with radially lobed basal cell, 6–8 µm diam. **Conidiogenous cells** terminal, integrated, 12–40 × 6–8 µm, medium brown, polyblastic, with a whorl of terminal, discrete, cicatrizated, cylindrical denticles, 1–3 × 2 µm. Conidia solitary, dry, simple, biconic to pyriform, pale olivaceous, smooth, aseptate, with indistinct transverse median hyaline band in vivo (absent when studied in vitro), apex obtuse, tapering from middle to truncate, slightly darkened hilum, 2 µm diam, (21–)23–27(–29) × (9–)10(–11) µm. **Ascomata** pale yellow, solitary to aggregated on OA and PDA, globose to somewhat papillate, with central ostiole, up to 250 µm diam; wall of 3–4 layers of subhyaline **textura angularis** to **intricata**. Pseudoparaphyses hyaline, septate, cellular, anastomosing, distributed among asci. Asci 8-spored, sessile, ununicate, hyaline, subcylindrical, 70–90 × 11–16 µm, with obtuse apex that does not stain in Meltzer’s reagent. Ascospores tri- to multiseriate, obovoid, hyaline, granular, smooth, aseptate with non-persistent mucoid sheath, (19–)20–22(–24) × (5.5–)6–7(–8) µm.

Culture characteristics — Colonies reaching up to 55 mm diam after 2 wk at 25 °C, with spreading, flat surface; margins smooth, lobate and moderate aerial mycelium. On MEA surface dirty white, reverse cream. On OA surface dirty white. On PDA surface and reverse dirty white.

Typus. FRANCE, La Réunion, S21°14′34.7″ E55°47′55.9″, RN2, on leaf spots of Ocotea obtusa (Lauraceae), 6 Mar. 2014, **P.W. Crous** & **M.J. Wingfield** (holotype CBS H-22396, culture ex-type CPC 26219 = CBS 140664; ITS sequence GenBank KT950856, LSU sequence GenBank KT950870, MycoBank MB814938).

Notes — Beltraniaceae is an old and mostly forgotten family name. Here we provide the first DNA evidence to support the fact that this name can be applied to genera in the Beltrania-complex. We also introduce a new species of Pseudobeltrania. Important generic characteristics include pigmented conidia with a hyaline transverse band, arising directly from denticulate conidiogenous cells, without an intervening cell, and the absence of setae (Pirozynski 1963). Based on the key to species provided for Pseudobeltrania by Heredia et al. (2002), *P. ocoteae* is clearly distinct based on its conidiophore and conidial dimensions. The sexual morph recorded here for Pseudobeltrania, together with the link of *Pseudomassaria carolinensis* to *Beltraniella* (Hodges & Barr 1971), represent the only sexual morphs known for *Beltraniaceae*.

Colour illustrations. Symptomatic leaves of *Ocotea obtusa* in La Réunion; colony sporulating on OA, conidiophores and conidia, ascospores forming on OA, asci in Meltzer’s reagent and in clear lactic acid, ascospores. Scale bars: ascospora = 250 µm, all others = 10 µm.

Pedro W. Crous, CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands; e-mail: p.crous@cbs.knaw.nl

Johannes J. Le Roux & David M. Richardson, Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland 7602, South Africa; e-mail: jleroux@sun.ac.za & rich@sun.ac.za

Dominique Strasberg, Université de La Réunion, UMR PVBM, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, 15 avenue René Cassin, CS 93002, 97 744 Saint-Denis Messag, Cedex 9, La Réunion, France; e-mail: dominique.strasberg@univ-reunion.fr

© 2015 Naturalis Biodiversity Center & Centraalbureau voor Schimmelcultures