Neobambusicola strelitziae
Fungal Planet 303 – 24 November 2014

Neobambusicola Crous & M.J. Wingf., gen. nov.

Etymology. Name reflects the morphological similarity with the genus Bambusicola.

Conidiomata separate or aggregated, erumpent, globose, dark brown, opening via central ostiole; wall of 3–6 layers of brown *textura angularis*. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* hyaline, smooth, subcylindrical to ampulliform, phialidic, proliferating percurrently at apex, or with prominent periclinal thickening. *Conidia* solitary, hyaline, smooth (becoming olivaceous with age), prominently guttulate, medianly 1-septate, constricted at septum, fusoid-ellipsoid, apex bluntly subobtusely rounded, tapering to a distinctly truncate base, mostly straight, but at times slightly curved. *Microconidial state* occurring in same conidioma. *Microconidiogenous cells* hyaline, smooth, doliiform to subcylindrical, proliferating percurrently at apex. *Microconidia* solitary, hyaline, smooth, guttulate to granular, aseptate, subglobose to subcylindrical, apex obtusely rounded, base truncate.

Type species. *Neobambusicola strelitziae.* MycoBank MB810614.

Neobambusicola strelitziae Crou and M.J. Wingf., sp. nov.

Etymology. Name reflects the host genus *Strelitzia*, from which this species was isolated.

Conidiomata separate or aggregated, erumpent, globose, dark brown, up to 200 µm diam, opening via central ostiole; wall of 3–6 layers of brown *textura angularis*. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* hyaline, smooth, subcylindrical to ampulliform, 7–15 × 3–5 µm, phialidic, proliferating percurrently at apex, or with prominent periclinal thickening. *Conidia* solitary, hyaline, smooth (becoming olivaceous with age), prominently guttulate, medianly 1-septate, constricted at septum, fusoid-ellipsoid, apex bluntly subobtusely rounded, tapering to a distinctly truncate base, 2 µm diam, mostly straight, but at times slightly curved, (15–)17–19 (–21) × (3–)3.5 (–4) µm. *Microconidial state* occurring in same conidioma. *Microconidiogenous cells* hyaline, smooth, doliiform to subcylindrical, 3–6 × 3–5 µm, proliferating percurrently at apex. *Microconidia* solitary, hyaline, smooth, guttulate to granular, aseptate, subglobose to subcylindrical, 3–7 × 3–4 µm, apex obtusely rounded, base truncate, 2–2.5 µm diam.

Culture characteristics — Colonies erumpent with sparse aerial mycelium and smooth, even, lobate margin, reaching 15 mm diam after 2 wk at 25 °C in the dark. On MEA surface dirty white with luteous in centre, reverse rust to red. On OA surface dirty white with diffuse luteous pigment. On PDA surface pale luteous with diffuse luteous pigment, reverse orange with diffuse luteous pigment.

Typus. SOUTH AFRICA, Eastern Cape Province, Haga Haga, on leaves of *Strelitzia nicolai* (Strelitziaceae), Dec. 2013, M.J. Wingfield (holotype CBS H-22000, culture ex-type CPC 24182 = CBS 138869; ITS sequence GenBank KP004467, LSU sequence GenBank KP004495, MycoBank MB810615).

Notes. — *Neobambusicola strelitziae* was isolated from necrotic leaf tissue associated with infections of *Phyllachora strelitziae*. The latter fungus causes well-defined subcircular leaf spots, 3–10 mm diam, with epiphyllous black ascostromata. As these leaf spots get older and enlarge, conidiomata are observed surrounding the ascomata in the dead leaf tissue. Doidge (1942) commented on 2-celled conidia of a potential hyperparasite invading old ascomata of *P. strelitziae*, which we suspect is *Neobambusicola strelitziae*. Further collections are required, however, to resolve the relationship between these two species. *Neobambusicola* resembles the genus *Bambusicola* in having reduced conidiophores with percurrent proliferation, and conidia that turn pale brown at maturity (Dai et al. 2012, Hyde et al. 2013). However, *Neobambusicola* is distinct in that it does not have pycnothylial conidiomata, and its conidia are fusoid-ellipsoid, rather than cylindrical.

ITS. Based on a meagastable search of NCBI GenBank nucleotide database, the closest hits using the ITS sequence are *Microdiplodia hawaiiensis* (GenBank GU361956; Identities = 391/461 (85 %), Gaps = 24/461 (5 %)), *Camarogaphium koreanum* (GenBank JQ044331; Identities = 413/494 (84 %), Gaps = 28/494 (5 %)) and *Paraconiothyrium hawaiiense* (GenBank KF177681; Identities = 390/461 (85 %), Gaps = 24/461 (5 %)).

LSU. Based on a meagastable search of NCBI GenBank nucleotide database, the closest hits using the LSU sequence are *Bambusicola irregularispora* (GenBank JX442036; Identities = 783/809 (97 %), Gaps = 3/809 (0 %)), *Bambusicola masarina* (GenBank JX442037; Identities = 782/808 (97 %), Gaps = 2/808 (0 %)) and *Bambusicola bambusae* (GenBank JX442035; Identities = 785/814 (96 %), Gaps = 3/814 (0 %)).

Colour illustrations. *Strelitzia nicolai* at Haga Haga, Eastern Cape Province, South Africa; colony sporulating on OA, conidiogenous cells and conidia. Scale bars = 10 µm.